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The modified (model, equivalent) equation is an important tool in designing and analyzing 
nonlinear difference schemes. In this note, the validity of this principle is rigorously 
established for nonlinear shock wave solutions and the upwind scheme in a particular case. 
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1. INTRODUCTION 

The use of the modified equation (also called model or equivalent equation in the 
literature) is an important tool in the design and analysis of difference schemes for 
time-dependent problems. This method has been applied successfully for a wide 
variety of practical and theoretical purposes including linear and nonlinear stability 
theory [lo, 17, 211, control of parasitic oscillations [15, 16, 211, design of non- 
linear filters [ 1, 61, and most recently to the design of second-order 
variation-decreasing schemes [7]. 

The principle involved in deriving the modified equation requires expanding 
solutions of the difference equation in Taylor series which results in a higher-order 
differential equation which formally more closely approximates solutions of the dif- 
ference scheme than the original differential equation does. An advantage of this 
principle is that it can be easily applied to nonlinear problems. The reader might 
suspect that such a procedure involving Taylor expansion has highly questionable 
validity when applied to discontinuous solutions. Nevertheless, Hedstrom ([9], 
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also see [3]) has proved the validity of the principle of the modified equation for 
general dissipative difference approximations to scalar linear equations with discon- 
tinuous initial data while there is substantial numerical evidence [15,22] sup- 
porting the validity of this procedure for many nonlinear difference schemes. Since 
the behavior of nonlinear difference approximations for shock wave initial data is 
completely different than the behavior of approximations to discontinuous initial 
data in the linear case (see [ 141 and our discussion in Section II), the reasons for 
the success of the modified equation in describing nonlinear difference schemes 
remain obscure. 

In this note, we rigorously and explicitly check the validity of the principle of the 
modified equation for the upwind difference scheme and shock wave solutions of 
the scalar nonlinear conservation law, 

WT 0) = UI, x<o (1.1) 
= ur, x>o 

where f(u) is an explicit concave function with f”(u) < 0. The Rankine-Hugoniot 
and entropy conditions for the initial data in (1.1) require (here a(u) = d!/du) 

sJ-h)-f(ur) 
u/-u, 

and 

a(u,)>s>a(u,)-u,<u, (1.2) 

so that the entropy satisfying shock wave solution of (1.1) is given by 

U(x, t) = U/T x < St 

= &-, x > st. 
(1.3) 

The starting point for our analysis is the explicit discrete solution formula dis- 
covered by Lax in [13] for the upwind difference scheme with the special concave 
nonlinearity, f(u) = -log@ + yePU), 0 < /I, y < 1, /I + y = 1. 

The upwind difference approximation for (1.1) is the nonlinear difference scheme, 

U1+‘=U1-I[f(ur)-f(ul_l)] 
0 ui = MI, i-c0 (1.4) 

=u,, i>O 

where A= k/h is the time-step to space-step ratio (we set 1s 1 throughout this 
paper), and the discrete approximate solution is u;z U(ih, nk). The modified 
equation for (1.4) is defined via Taylor expansion from the identities 
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24(x, t + h) - u(x, t) 

h 
=u,+;u,,+O(h2) 

= ut +; (4u)(f(u)L), + 0th’) 

substituted into (1.4). After dropping terms of order h2, we obtain the modified 
equation for (1.4) with 1~ 1, 

w: + (fwxr =; cc1 - 4~hwwhlx (1.5) 

with the discontinuous initial data 

wyx, 0) = U[, x<o 

= ur, x > 0. 

The validity of the principle of the modified equation in this context for shock wave 
initial data requires that 

the error d(ih, nh) - u; 
is much smaller than the error 
L’( ih, nh) - u’. 

(1.6) 

Below we set f(u) = -log(/? + ye-“) and verify this principle for weak shocks 
through the following three steps which have independent interest: 

I. Approach of the Discrete Solution to an Explicit Discrete Travelling Wave Profile 

For any u,, u,., there is a discrete travelling wave 

where v is explicitly given by ([u] = U, - U, > 0) 

0) = log ( 
eu/ + eweculY 

1 +,Culv 
> 

. (1.7) 

Furthermore, u approaches v exponentially; that is, 

124; - v;J < clemc2” 

where c, and c2 are positive constants depending on U, and u,. 
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II. Approach of Modified Equation Solutions to Continuous Travelling Waves 

For any U/X u,, the solution &(x, t) of the modified equation (1.5) tends 
exponentially to be a travelling wave w: 

x-St 
Wh(X, t) - w - 

( )I h 
6 c 1 e - c2rlh 

where again cl, c2 > 0 are constants depending on uI, u,. The function w(t) is the 
solution of the scalar nonlinear O.D.E. (recall a(w) = dfjdw), 

w’(t) = (a(w)(Z- a(w)))-‘(f(w) -SW - c) 

w(0) = ug 
(1.8) 

with c = f(ur) - su, = f(u,) - SU, and the value uO, uI < u0 < U, is determined uni- 
quely by the condition 

jom Cur-w(t))&+ j” (u,-w(t))&=O. -cc (1.9) 

The function w  is determined from (1.8) by quadrature. This result is due to Illin 
and Oleinik [ 111. 

With the above facts I and II, we see that a proof of the validity of the modified 
equation in this case reduces to explicit comparison of the discrete profile (1.7) with 
the continuous profile (1.8) and with the exact solution in (1.2). The natural scale of 
comparison for these three functions is given by the shock strength, 6 = u, - uI. The 
step size, h, is not a natural parameter since both the discrete wave profile, v, and 
the continuous wave profile, w, are independent of h. By explicit comparison of the 
wave profiles in (1.7) and (1.8) in Section III we obtain the following. 

III. Comparison of Discrete and Continuous Wave Profiles 

With 6=u,-ur, for 6<6, 

where c is a fixed constant depending only on ul and independent of 6. 
It is now a simple matter to combine steps I, II, and III to conclude that 

-,y~~+, Iur- wh(ih, nh)l <cc?* + cIep”2”. (1.10) 

On the other hand, (1.3) and (1.7) give 

(1.11) 
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The estimates in (l.lO), (1.11) rigorously prove the validity of the modified 
equation for any fixed time T= nh for these shock solutions as required in (1.6) 
provided first 6 is chosen sufficiently small and then h is chosen smaller than a fixed 
h,, which is uniform for all T> r,, > 0. Moreover, our explicit comparison in Sec- 
tion III indicates that the agreement of the difference equation and the modified 
equation is much better in a large region near the shock than the agreement of the 
solution of the difference equation and U(x, t) from (1.1). Far away from the shock, 
the differential equation solution U(x, t) agrees exactly with the solution of (1.4); 
however, from II, the modified equation has exponentially small errors in this 
region so there is not significant disagreement. 

2. APPROACH OF THE DISCRETE EVOLUTION PROBLEM 
TO THE DISCRETE TRAVELLING WAVE 

We study the solution of the difference scheme (1.4) using Lax’s [13] discrete 
analogue of the Hopf-Cole transformation, which linearizes (1.4). The purpose of 
this section is to prove: 

PROPOSITION 1. The solution to (1.4) (with A= 1) tends exponentially to a travell- 
ing wave v, i.e., 

(u;-v(i-sn)] <cleeC2” (2-l) 

for all integers n > 0 and i, and for some c,, c2: > 0 depending on u, and u,. 

Remarks. (1) Proposition 1 illustrates several differences between linear and 
nonlinear problems. The linear problem typically does not have discrete travelling 
waves; on the contrary, the error region typically grows like some fractional power 
of n [9]. The remarkable exponential convergence in (2.1) is also a distinctly non- 
linear phenomenon. See Lax [14] for additional discussion of these differences. 

(2) The existence of discrete travelling waves for strictly monotone schemes 
was proved by Jennings [12]. Jennings also proved convergence of the solution of 
(1.4) to the discrete travelling wave, but with no rate. (See also [20] for a careful 
and clear proof.) We believe that our exponential rate (2.1) is very generally true 
and a proof of this would be extremely interesting. Numerical evidence shows a 
very rapid convergence rate. 

(3) The constants c, and c2 are not uniform in the shock strength uI-u,. 
However, more detailed estimates of the binomial sums below would probably give 
simple approximate formulas for the discrete solution which go over to the 
expressions for the linearized problem as uI - U, -+ 0. 

(4) Lax [23] has found a family of schemes that can be solved explicitly as 
below. Some of these schemes are more than first-order accurate. It would be 
interesting to study discrete shock profiles (or lack of them) for these schemes. 
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Proof: The proof has two parts. First we use Lax’s transformation to express 
the solution of the difference scheme in terms of binomial sums, then we 
asymptotically evaluate the sums. In this way the solution of (1.4) is equal, except 
for exponentially small terms, to a simple explicit expression which is the discrete 
travelling wave solution. 

Following Lax [13] we “integrate up” (1.4) as follows. Given q, suppose we 
compute U;, for n > 0, by 

If we define u; = U;, , - U;, then u; satisfies (1.4). We can use this to solve (1.4) if 
we choose q so that q+ 1 - Uy = up for all i. Taking 1= 1 and using Lax’s flux 
function f(u) = -log@ + ye-“) gives 

U;+‘=log{/3exp(U;)+yexp(U;-,)}. 

The transformation 

V=e” 

converts this into the desired linear difference equation for V, 

V;+LfiV;+yV;-’ 

which implies that 

pkykVpk. 

P-2) 

(2.3) 

The initial data in (1.4) is achieved by taking 

Uy=u;i i>O 

=u,.i i < 0. 

Using (2.2) this becomes 

e = eiUr i>O 

= iw e i<O 

so that (2.3) becomes 

i-kc0 
O<k<n (2.4) 

Vy = e’“‘S,(i, u,) + e’“rS,(i, u,) 
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where 

i&k<0 
OCkGn (2.5) 

i-k>0 
O<kCn 

In the case of a shock, u, < u, (not u, < u, since the flux function is concave, not 
convex), there is a simple asymptotic expression for (2.4). Either both SI and S, are 
well approximated by the full binomial sum 

(/3 + yeC”‘)n - S,(i, 24,) d clepc2”S,(i, u,) Q-6) 

(P+ye-“)“-S,(i, ~,)<c~e-‘~“S,(i, u,), (2.7) 

or one of the terms is well approximated by the full binomial sum and the other is 
exponentially small relative to the first: 

eiu’S,(i, 24,) <e’“‘(/?+ye-“‘)“6 cle-‘*“S,(i, 24,) (2.8) 

or 
eiurS,(i, u,) < e”r(P + yeCur)” d cle-c2”S,(i, u,). (2.9) 

In other words, there are three regions. In region A (to the left of the shock) (2.6) 
and (2.9) hold. In region B (near the shock) (2.6) and (2.7) hold. In region C (to 
the right of the shock) (2.7) and (2.8) hold. We will show that these three regions 
together cover the whole line; so we have, for some ci, c2 > 0, and for all i, 

1 V;-- {eiU’(P+ye~“)“+e’“~(P+ye-“~)}I <cleCc2”V;. 

Substituting back into (2.2) gives 

= log 
e”‘e”‘(/? + ye-uJ)n + eU~f+(P + yepur)” 

eiul(a + be-W)n + eh(a + be-u,)n 1 
+ E? 

1 

where l.s;l < c1 e Pc2n. Using the notation 

[u]=u,-u,>o 

[f] =f(u,) -f(q) = -log(/l+ ye-+) + log@ + ye-“) 

we have u; = v; + ~7 where 

0; = log 
{ 

e”+e”‘exp(i[u]-n[f]) 
1 +exp(i[u] -n[f]) 1 

(2.10) 



MODIFIED EQUATION FOR NONLINEAR SHOCK WAVES 343 

This o is the desired discrete travelling shock profile and satisfies the difference 
scheme as the reader is invited to verify. If one is only interested in discrete wave 
profiles, then (2.10) may be found in a simpler way. In the case s = [f]/[u] = $, 
Eq. (1.4) for u is a three-term recurrence relation which may be explicitly solved. 
Generalizing this solution to other rational and irrational values of s leads to the 
ansatz (2.10). 

It remains only to verify our claims about the binomial sums SI, S,. Our method, 
which is due to Feller [S, Chap. 61, is a discrete analogue of the Laplace method 
(or method of stationary phase) for asymptotic evaluation of Gaussian integrals. It 
is easy to identify the largest terms in a binomial sum, and most terms are 
negligibly small compared to the largest terms. 

LEMMA 1. Define partial binomial sums by 

0, P, 4, P)= 1 
OCk/n$p 

P, 4 > 0. 

If p > p/(p + q) then there exist positive constants cl, c2 so that 

(P + q)“- S(4 P, 4, P) 6 cle-‘2”W4 p, 4, p) 

< c,eCc2”(p + 4)“. 

ProoJ Denote the general term in the sum by 

and let rk be the ratio of successive terms 

tk+ 1 l-a p k 
rk=- =-.- where (T=-. 

tk a+l/n q’ n 

Now, if rk = 1 then cr < p/(p + q) and, for all 0 < cr < 1, 

(2.11) 

where co is a positive constant. Choose E > 0 so that p - p/(p + q) > 2.5. Then there 
exists an integer no > 0 and integers k, > k, > 0 (the latter depending on n) so that if 
n > no, then 

ko P -a-++ (2.13) 
n P+4 

k, ko 
p>-a-+&. 

n n 
(2.14) 
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From (2.12) and (2.13) we know that rk < 1 -cc,& when k > ko. This, together with 
(2.14), gives 

when k B k, . This gives (2.11) since 

<c,e -w, P, 4, P) 

for all n > n,,, and also for the finitely many n < n, after possibly adjusting the con- 
stants cl, cl. This completes the proof of Lemma 1. 

To evaluate SI, take p=fi, q=ye-“’ to get o</?/(/?+ ye-“‘). This gives (2.6) 
provided that i<n. (/?/(fi + ye-“‘-&)) for some E >O. On the other hand, if 
i>n([f]/[u] +E) then 

eiyp + Ye-w)n < C,e-c2n. eiyfi + ye-ur)n 

so (2.7) implies (2.9). Similarly, (2.7) follows from i > n(/I/(B + Ye-‘?) + E), and (2.6) 
implies (2.8) when i < n( [f]/[u] - E). 

These inequalities have a natural physical interpretation. The sum SI is well 
approximated by the full binomial sum, roughly if i/n = x/t < /3/(j + ye-“) =f’(u,), 
which is the linear sound speed for Us. Also, S, is small compared to S,, roughly 
when i/n = x/t > [f]/[u], which is the Rankine-Hugoniot shock speed. Similarly, 
Lemma 1 applies to S, when x/t >S’(u,), and S, < SI if x/t < [f]/[u]. The fact that 
regions A, B, and C cover the whole line is equivalent to 

I-‘(%) < C”mu1 <f’(%h 

which is exactly the entropy condition, that characteristics from both sides of the 
shock wave run into the shock. 

3. ADJUSTMENT OF MODIFIED EQUATION SOLUTIONS 
TO CONTINUOUS TRAVELLING WAVES 

The solution of (1.5), with shock initial data, also converges exponentially to a 
travelling wave solution W((X - st)/h), as we now briefly show. The.new variables 
r = h-‘t, y = h-lx put the modified equation (1.5) into the form 

where b(u) is given by 

4 + U-W), = (b(u) uy)y 

b=+(l -a(u))a(u). 

(3.1) 
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The initial data 

U(Y, 0) = U/T Y<O 
(3.2) 

=24 ,3 Y>O 

are preserved. The exponential convergence in time of order h for the solution of 
(1.5) therefore follows from exponential (in z) convergence of solutions of (3.1) 
(3.2). This, in turn, is contained in results of Illin and Oleinik [ll]. Actually, the 
results in [ 111 are for b independent of U. However, since their proof is based on 
the comparison principle for parabolic equations, the proof extends to our case, 
where b is positive, smooth, and bounded away from zero. Therefore we omit a 
detailed discussion. 

PROPOSITION 2. Let u solve (3.1) with (for some positive M and CC) 

s 
Y  

lu(y’,O)--,I dy’<Meay, Y<O --oo 

s 
a lu(y’,O)-u,l dy’dMe-“y, Y>O 

Y  

5 m (~Y>O)-W(Y))~Y=O 
-cc 

(this is the condition (1.9)). Then, for some positive constants c1 and c2, 

lu(y, z)-w(y-sz)l <cle-c2’. 

Returning to x, t variables, we get the desired estimate: 

4. COMPARISON OF CONTINUOUS AND DISCRETE TRAVELLING WAVES 

We wish to compare the travelling wave, w, for the modified equation (which 
satisfies (1.8), (1.9)) to the discrete travelling wave (1.7). This is hard to do directly 
since we cannot solve (1.8) explicitly. Therefore first we compare (1.7) to the travell- 
ing wave solutions of Burgers’ equation, 

SSl/58/3-5 
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which satisfy 

U’(Y) = (u - Mu - 4) 

u/+u, u(O)=U=-. 
2 

The solution of (4.1), (4.2) is 

6 1 -ee6y 
u,(y)=U+--; 

2 1 + esy 
6 = 24, - U[. 

(4.1) 

(4.2) 

(4.3) 

A Taylor series calculation involving (1.7) together with the estimate 

l+&-(l+a&)p 1-p 

l+P 
=iq+y+O(4 uniformly for 0 < p < 00 

shows that 

(4.4) 

To complete the argument, we compare U, with the wave profile W. This goes in 
two steps. A lemma of Caflisch [2] shows that sup, \u(y) - w(y)] = 0(S2) where u 
is the solution of (4.1) and 

u(0) = ug = w(0). (4.5) 

Then we show that uO-- U = O(S*). But this implies that (4.1), (4.5) is solved by 
u(y) = u,(y + O(d)). Since supY lu:( y)j = O(6), (4.4) gives 

b(Y) - dY)l = IUAY + W@) - dY)l = W2). 

All together we get 

Iw(y) - U(Y)1 < lw(y) - U(Y)1 + MY) - U,(Y)1 + l%(Y) - 4Y)l. 

Having shown that all terms on the right are 0(d2) we get the desired estimate 

sup lw(y)-u(y)1 6c.d2. 

LEMMA 2. Suppose w satisfies (for some c” > 0) w’ = B(w); w(0) = u,, where, for 
all u, > w > u,, we have 

B(q) = B(q) = 0 (4-h) 

(1 - $“(W)J < 26. (4.7) 
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Let u satisfy (4.1), (4.4). Then, for all 6 sufficiently small, 

sup lu( y) - w( y)( 6 c * d2. 

ProoJ See [2, Lemma 81. Caflisch’s statement has more hypothesis than we 
state but these follow from (4.6), (4.7) if 6 is sufficiently small. 

To apply the lemma, we show that (1.8) is of the form w’ = B(w) where 

when u,>wau,, for some Q. This will verify the hypothesis of the lemma (since 
(4.8) is equivalent to (4.6), (4.7)). From (1.8) and f(u) = -log@ + ye-“) we 
calculate 

B(u)=b(u)-‘(f(u)-su+c) 

where 

&)=l Bye-” 
2 (fi + ye-“)2 

> 0. 

Now, s and c are chosen so that 

f(u)-su+ c= &j-“(iq(u-u,)(u-q.)(l + O(S)) 

so (4.8) is satisfied, since $(f”(u)/b(ti)) = 1. 
Finally, to show that U-u,, = 0(d2), generalize (1.9) by defining Z(u) by the 

relation 

z(u)=JYI’)(w-u,)dy+j~u)(w-u,)dy. 
-m 

Here y(u) is the inverse function of u(y). Since w  is monotone, y(u) is unique and 
we may change variables to write 

Z(u)=JU(w-uJ-&+ pw-uJ&. W 
From (1.9)wegetZ(u,)=Owhile (4.8)givesZ(fi)=0(6). Since J(d/du)Z(u)l 3c.S-l 
for all u, > u > u, we have U - u,, = 0(a2) as desired. 

Remarks. (1) The 0(S2) agreement of continuous wave profiles for the model 
equation and discrete travelling wave profiles established explicitly in this section 
should be true in much more general situations for first-order and even third-order 
dissipative schemes (see the conditions in [18] guaranteeing discrete travelling 
waves and the improved methods and results in [19]). A proof of this fact would 
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provide further evidence for the validity of the modified equation for nonlinear dif- 
ference schemes. In fact, even a crude version of the maximum norm convergence to 
discrete wave profiles conjectured in Remark (2) of Section 2 together with the 
above result would rigorously establish the principle of the modified equation for 
any strictly monotone scheme and weak shocks by a repeat of the argument given 
here. 

(2) Engquist and Osher [4] have given examples of steady wave profiles with 
states u,, u,. where the principle of the modified equation fails. However, the 
schemes that they consider fail to be dissipative when linearized at some (sonic) 
point il with U, > ii > U, and b(u) from (3.1) satisfies b(C) = 0. Since the principle of 
the modified equation is not valid for a linear difference scheme which fails to be 
dissipative [9], these results are not so surprising. 

REFERENCES 

1. J. BORIS AND D. BOOK, J. Cornput. Phys. 11 (1973), 38-69. 
2. R. CAFLISCH, Comm. Pure Appl. Math. 32 (1979), 531-548. 
3. R. CHIN, J. Comput. Phys. 18 (1975), 233-247. 
4. B. ENGQUIST AND S. OSHER, Math. Comp. 34 (1980), 45-75. 
5. W. FELLER, “An Introduction to Probability Theory and Its Applications,” Vol. 1, Wiley, New York, 

1950. 
6. A. HARTEN, Comm. Pure Appl. Math. 30 (1977), 611-638. 
7. A. HARTEN, High resolution schemes for hyperbolic conservation laws, to appear. 
8. A. HARTEN, J. HYMAN, AND P. D. LAX, Comm. Pure Appl. Math. 29 (1976), 297-322. 
9. G. HEDSTROM, Math. Comp. 29 (1975), 969-977. 

10. C. HIRT, J. Comput. Phys. 2 (1968), 339-355. 
11. A. M. ILLIN AND 0. A. OLEINIK, Math. Sb. 51 (1960), 191-232. 
12. G. JENNINGS, Comm. Pure Appl. Math. 26 (1973), 25-37. 
13. P. D. LAX, Comm. Pure Appl. Math. 10 (1957), 537-566. 
14. P. D. LAX, Accuracy and resolution in the computation of solutions of linear and nonlinear 

equations, in “Recent Advances in Numerical Analysis,” pp. 107-117, Academic Press, New York/ 
London, 1978. 

15. A. LERAT, Numerical shock structure and nonlinear corrections for difference schemes in conser- 
vation form, in “Sixth Interhational Conference on Numerical Methods in Fluid Dynamics,” Lecture 
Notes in Physics No. 90, pp. 345-351, Springer-Verlag, New York/Berlin, 1979. 

16. A. LERAT AND R. PEYRET, C. R. Acad. Sci. Paris Ser. A 276 (1973), 759-762. 
17. A. MAJDA AND S. OSHER, Numer. Math. 30 (1978), 429-452. 
18. A. MAJDA AND J. RALSTON, Comm. Pure Appl. Math. 32 (1979), 445-482. 
19. D. MICHELSON, Discrete shocks for difference approximations to systems of conservation laws, to 

appear. 
20. S. OSHER AND J. RALSTON, Comm. Pure Appl. Math. 35 (1982), 737-749. 
21. R. WARMING AND B. HYETT, J. Comput. Phys. 14 (1974), 159-179. 
22. G. ZWAS AND J. ROSEMAN, J. Comput. Phys. 12 (1973), 179-186. 
23. P. D. LAX, On difference schemes for solving initial value problems for conservation laws, in 

“Proceedings, Rome Symposium on Questions in Numerical Analysis,” June, 1958. 


